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ROBUST STABILITY
OF SYSTEMS WITH
DELAYED FEEDBACK™*

Erik I. Verriest' and Anatoli F. Ivanov?

Abstract. Some issues in the stability of differential delay systems in the linear and
the nonlinear case are investigated. In particular, sofficient robustness conditions are
derived under which a system remains stable, independent of the length of the delay(s).
Applications in the design of delayed feedback systems are given. Two approaches are
presented, one based on Lyapunov theory, the other on a transformation to Jordan form. In
the former, sufficient conditions are obtained in the form of certain Riccati-type equations.

1. Introduction

In many applications, such as man-machine systems, biomedical systems, pro-
cess control, remote control and robotics, delays are inherent in the control due
to transportation lags, and conduction or communication times. Moreover, the
delay may not be exactly known, or even fixed. The purpose of this paper is to
investigate some stabilization issues of such delay systems, in particular their
robustness with respect to the delay times. A connection is made to the theory of
singular systems, which may provide some new insights into the regularization
of such systems.

In order to fix the ideas, we assume that some system needs to be regulated
about some fixed operating point. Locally, then, the system dynamical equations
are suitably approximated by a linear system,

i(t) = Az(t) + Bu(t) (1)

where z(t) in (1) denotes the state excursion, away from the nominal operating
point, and u(t) is an admissible control. In order to accommodate for trans-
portation and/or communication lags, we assume that at time ¢ the admissible
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controls belong to the space generated by {z(c) | 0 <t — r} for some r > 0.
In particular, the case where u(?) is some nonlinear function of the state at the
latest available instant is considered here, as it coincides with the design of a
state feedback controller in the absence of a delay:

u(t) = K{z(t — )] (@)

Such more general nonlinear control functions are for instance desired in the
case of bounded admissible inputs, leading to linearly or quadratically saturating
controls [1].

The closed loop system is then given by the delay differential system

() = Az(t) + Flz(t — )] 3)

where F'(-) = BK(-). It is well known that the system can also be represented
via time scaling by
et(t) = Ax(t) + Flz(t — 1)] 4)

where € = 1/r. One of the approaches used is to consider the above equation as
a singular perturbation of the difference equation with continuous time,

Az(t) = —F[(z(t — 1)), G

and from this the map —A~'F: R® — R™, with its corresponding dynamical
system [2]. In the scalar case with F’(z) = bz, the following results are known for
the differential delay system [3], [4]: If a < 0, then all roots of the characteristic
equation s = a+be " have real part smaller than some number for all » > 0. If
a > 0, then for every real o > 0, there exists an ro(c) such that the characteristic
equation has at least one root with real part larger than o for all r > ro(0).

This paper is organized as follows: in Section 2, we consider the class of
linear differential delay systems. Sufficient conditions for robust stability, in
terms of Riccati-like equations, are established based on the Lyapunov theory.
In Section 3 a direct approach is used for the nonlinear and linear robust stability
problem.

2. Riccati-type equations
We consider here the equation (3) for the case of a linear feedback (2), but with
arbitrary delay. Let for simplicity the equation be rewritten as
() = Az(t) + Bx(t —r). ©6)

The following sufficient condition is readily established.
Theorem 1. The system (6) is asymptotically stable, if there exists a triple of
positive definite (symmetric) matrices P, () and R such that

AP+PA+Q+PBQ 'BP+R=0. €))
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Proof. Consider the function
t

V(z)=z'Pz + / z'(0)Qx(o)do. ®)

t—7r
Along trajectories of (6) we have
V()= [zt — r)QY* — x(ty PBQ™T/?| [QTx(t — r) — Q™2 B' Px(t))
+ z(t) [A'P + PA+ Q + PBQ™'B'Plx(t)
< —z(t) Rz(t) < 0. )]

By Lyapunov’s lemma, global asymptotic stability follows if the conditions of
the theorem are satisfied. ' g

The left hand side of the equation (7) is similar to the Riccati equation, but
has a sign change in the quadratic term. Some other sufficient conditions can be
derived from it.

Corollary 1.1. The system (6) is asymptotically stable, if there exists a positive
definite (symmetric) matrix Z and a positive scalar o such that

Z+o(ZA +AZ)+o?BZB' < 0. (10)

Proof. Set P=pZ~! and Q = q¢Z~! with 2 = o in Theorem 1. O

It is an easy consequence of (10) that in the special case of B = bl,, with
b scalar, the robust stability is guaranteed if Re A(A) < —|b|. This occurs in
the linearized dynamics of a Continuous Stirred Tank Reaction, CSTR [5]. A
particularly useful sufficient condition is given in the following.

Corollary 1.2. If the symmetric part A, of A satisfies
1
As < —§(q1'+BB'/q) (1

for some positive scalar g, then the system (6) is asymptotically stable.

Proof. Set P =1 and @ = ¢I in Theorem 1. g

Note that the choice g = || B|| leads to a simple sufficient condition
1
A<~ (IBIT+ BB'/|BI)

which reduces in the scalar case to the well known criterion a < —|b||. This
sufficient condition is further implied by A, < —|| B||1, since HIT"BB’ <|IB||L.

This Lyapunov method is easily generalizable to systems with multiple delays.
We state the following result.
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Theorem 2. The system
E(t) = Az(t)y + Biz(t — 1) + Bizt — )+ - -+ Bpo(t — 7). (12)

is asymptotically stable for all values of the delays 0 < 71 < Ty < -+ < T if
there exists a (symmetric) positive definite matrix P, and (symmetric) positive
definite matrices Q1 2> Q2 > + -+ 2> Qp = Qa1 = 0 such that

A'P+PA+Q + Z PB(Q; — Qi) 'B'P < 0. (13)

i=1

Proof. Consider the function

t t—7
V(z)=2z'Pz + / ' (0)Q1z{0)do + / z'(0)Qrx(0)do
t—7 t—7
t—'rm_l
+oeen +/ 2'(0)Qmx(o)do 14)
t—Tm

and use the same trick of “completing the squares™ as in the proof of Theorem
L O

Without any problem, Corollaries 1 and 2 are easily generalized for this case
as well.

3. Approach via Jordan form

Consider a system of linear differential delay equations
ex(ty = Az(t) + Bz(t — 1) (15)

where x € R™, A and B are real n x n matrices, and € is a positive parameter.
By a similarity, the system (15) is equivalent to one with an A-matrix in Jordan
canonical form, A = Blockdiag(J;).

Theorem 3. If all eigenvalues of A have negative real parts, and all eigenvalues
of A™'B are inside the unit circle, then the null solution of the system (15) is
stable for all sufficiently small € > 0.

Proof. By setting € =0 in (15), the limiting difference system —Axz(t) = Bz(t—1)
is obtained, which is equivalent to (A4 is nonsingular)

z(t) = —A7' Bzt - 1). (16)

The conditions of the theorem imply that the null solution of (16) is asymptot-
ically stable. We shall show that the solutions of system (16) and system (15)
are close within finite time intervals for small € > 0. More precisely, let B; be
a unit ball in C([—1,0],R), and let z,(t) denote the solution of (16) through
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the initial function ¢, while mf/,(t) is the solution of (15) through 1 with fixed
€ > 0. Then we shall show that for arbitrary fixed T > 0 and ¢ > O there exists
a § > 0 and an € > 0 such that for every ¢, ¥ € C([—1,0],R) one has

sup{|z,(t) — z3@)|, t € [0,T1} <o 17)

for all 0 < € < €9, provided sup{|(t) — ¥(t)], t € [-1,0]} < é. From (17) and
the asymptotic stability of the null solution of (16), the asymptotic stability of
the null solution of (15) is straightforward (for 0 < € < €). So we are left to
prove the closeness mentioned above.

Consider first the case of a real eigenvalue A; < 0. Let it correspond to a
Jordan block J; of size my of matrix A. Equivalently, consider the m; equations
of systems (15):

€£i31(t) = )\lscl(t) + IEz(t) + bu.’l?](t — 1) +---+ bln.’En(t — 1)
€2a(t) = Mza(t) + 23() + bz (f — D) + - - + bopzn(t — 1)

: (18)
ejjml—l(t) = /\lmml—l(t) +Tm, @+ bml—lzl(t D+ + bml—l,nl'n(t - 1)
€L, () = MTm, (1) + by 1T1(E — D)+ + by Tt — 1)

where \; < 0.

From the last equation of system (18), closeness between the m;-th compo-
nents of systems (16) and (15) is derived in essentially the same way as it is
done in [2]. Substituting then x,,, (f) to the (m; — 1)-st equation of (18), we
derive in the same way the closeness between the (m; — 1)-st components of
systems (16) and (15), and so on up to the first equation of (18). The arguments
for other blocks J;, for ¢ > 1 associated with real eigenvalues of the matrix A
are the same.

To show the closeness in the case of complex conjugate eigenvalues of matrix
A we consider first the simplest situation of m = 1. Therefore, we may assume
that (notice the rescaling)

A=[—1 “"] B=[2” blz]. (19)
21

w -1 b22

The limit case € = 0 corresponds to the system (16) with the consistency condi-
tion
z(0) = —A"!Bz(-1), (20)

where z = [, z2]. We show the closeness componentwise. The first component
of (15) is given by

wt . wt
zét) = e ¥ [ 29 cos — — 23 sin —
1 1 c 2810 —

]. t s—t w(s —
+ = e < |bycos
€Jo

t + by sin w(se— t)

z1(s — 1ds



218 VERRIEST AND IvaNOV

| R L w(s —
+ = e < |bpcos
€ Jo

and the first component of (16) is given by

t
) + by, sin

i “’(36_ D1 2a(s — 1)ds, 21)

1
z1(t) = [(bu wh)zi(t — 1) + by —whp)za(t — 1)],  (22)

where £ € [0, 1] and z1(t — 1), zo(t — 1) are the first and second components
of the initial function in [—1,0], 2§ = £1(0), 2§ = ,(0). The first component of
the consistency condition (20) takes the form

1
z1(0) = [(bu wha)z1(=1) + (b2 — whbxn)za(—1)]. (23)

Assuming dlfferentlablhty of ¢(s), s € [—1,0], it is an easy exercise to find that

t
l/ et cos w(s t)qb( )ds
0

o) ¢<0) _t,E[ wt wt]

o

"7 132 0§ — — wsin — 24)

€ €
1 L —t _
— m \/0' 6( et) I:COS w(se ) + w sin @] qs,(s)dSv

and likewise

1 [t e

—/ e etsinw(s )q‘)( Yds
0

w¢(t) $0)  _y/e wt . wt
“Tro? 1+w2e wcos-—é—+s1n——é— (25)

1 boen —t —t

- —2/ e [Sinw—wCOSM] @' (8)ds.
14+w? Jy € €

We note next that

t
/ e sinw(s D) (s)ds = OGe),
0

t
/ 6% cos ‘”(56_ & (s)ds = O(e), (26)
0

as € — +0. Therefore: substituting (25) and (26) into |zS(t) — z1(t)| = A®E),
t € [0,1], and taking (23) into account, we obtain A(t) = O(e) for ¢t € [0, 1],
and € < 1. The same arguments show the closeness for the respective second
components. To show the closeness in the case of continuous initial functions
z(s), s € [—1,0], the approach of [2, Chapter 3] may be used with more
technical details involved.

The arguments for 2m-dimensional A blocks corresponding to a Jordan block
of size m for a complex eigenvalue (and its conjugate) is treated similarly but
with more technical computations. O

A partial converse is given in the following.
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Theorem 4. If there exist eigenvalues of A with positive real part, then the null
solution is unstable for sufficiently small € > 0.

Proof. The proof will be restricted to the case of one simple positive (real)
eigenvalue, with all other having negative real parts, and the case of one simple
complex conjugate pair with positive real part, and all other eigenvalues having
a negative real part. The proof in the other cases proceeds with the same ideas,
but has more complicated details.

In the Jordan canonical form we may assume thus that A; = A\; > 0, and
Re A; < 0 for ¢ > 1. Next we shall make use of the following known fact. The
scalar transcendental equation

€s = a+ bexp(—s) V1))

has roots with i) uniformly (with respect to € > 0) bounded from above real
parts in the case a < 0, and ii) with unbounded from above real parts as € — +0
in the case a¢ > 0 [3]. Also system (15) is equivalent to the system

2(ty= Az(t)+ Bz(t — 1) (28)
with r = %, and (27) is equivalent to
s=a+bexp(—rs). 29)
Consider now the corresponding characteristic equation
A(s) = det[s] — A — Bexp(—sr)] =0 (30)
or in expanded form:
§— i —bue™*" —bpe=s . . e
det —b1e™" s — X —bpe T —1—bye T cee —bype—sT
L . . _bn;n.;le_sr N ,\;,;; - =0-

Calculating the above determinant by the Laplace expansion using the first

row, we have
A(s)= (s — A — bue ") P(s) + Q(s) = 0 (31)

where |Q(s)] — 0 as r — +oo and Re s > 1, and P(s) has no zeros and is
bounded away from zero for Re s > rg > 0 for some 7y since all \;, 2 > 2 have
negative real parts. So (31) may be rewritten in the form

A(S) =8 — )\1 — bue“" + R(S) = 0,

where |R(s)| is sufficiently small as 7 > 1 and Re s > 1.

Finally, Rouché’s Theorem is invoked, guaranteeing the existence of close
zeros of analytic functions under small perturbations. Indeed, since A\; > 0, by
the above equation, A;(s) = s — A\; — b;1e™ %" has a zero sy with unbounded
from above real part as 7 — +o00. The perturbation R(s) is small in the vicinity
of this zero since Re sy > 1 and » >> 1. Therefore, in the neighborhood of sq
there exists a zero of A(s).
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In the case of a complex conjugate pair with positive real part, we again
focus attention to the subsystem, with € > 0,

d @) _[1 w|][z:0) bii bin| {1t —1)
‘T [m(w “l-w 1] |2®] b b lme-1] P
We claim that the real parts of the zeros of the corresponding characteristic

equation of (32) are unbounded from above for ¢ > 0. Indeed, the characteristic
equation has the form

€s — 1 —bpe* —w — bjpe™* _
det |: w—bye s’ €s — 1 —bpe™* =0, (33)

or
0=(es — 1)+ [—(es — )by + ba2) + w(by — bro)]e™
+ (briba — biabar)e ™. (34)

Now we note that P(s) defined as es+a+be™* has zeros with real parts uniformly
bounded from above for € > 0 in the case a > 0 (with the opposite statement in
the case a < 0). Therefore, the same property is enjoyed by the quasipolynomial
Q(s) = P%(s) + ¢, where c is a constant. But Q(s) is the right hand expression
in (34) for an appropriate c. |

Extensions exist to the nonlinear case with A = —1I,,. In particular the estab-
lished results relate to the invariance and the continuity properties: The following
theorem says that the set C([—1,0], D) is invariant under the semiflow defined
by (4), provided D is convex, closed, and invariant under F'.

Theorem 5. If D is a closed convex invariant domain under the map F, then

for any ¢ € C({—1,0],D) € x D the solution to the singular delay equation

has the property that x, € D for all t > 0 and € > 0.

Proof. Let D C X = R"™ be a convex and closed domain which is invariant
under F'. Take ¢ € Xp ={¢ € X | ¢(t) € D, Vt € [—1,0]} and suppose that
there exists a time o > 0 such that z3(t) € 0D (the boundary of D) and the
solution xfﬁ(t) leaves the domain D for ¢ > ty. Then the vector & (to) is directed
outside the domain D, and so is the vector ez3(to). Since we may assume o
to be the first point at which :cfp(t) leaves the domain DI, the F[mfb(to — 1] lies
inside the domain D. Therefore the vector F[zfﬁ(to - D] - xg(tg) is directed
inside the domain D. But according to Equation (4) for A= —1I:

ezg(to) = Flzg(to — 1] — zg(to) :
a contradiction. This proves the theorem. O
Consider the nonlinear equation

ei(t) = —z(t) + Flz(t — D). (35)
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Suppose that the multidimensional map F:R™ — R™ has an arbitrary fixed
point zy such that there exists an open convex neighborhood U of xy where
F*) are convex sets. (Therefore (o F*(U) = o, the fixed point is locally
attracting.) Let X3y = C([—1,0],U) be a subset of initial functions and Tg, be a
solution of (35) constructed through ¢ € Xj,.

Theorem 6. For arbitrary positive € one has
lim zg(t) =20, V¢ € Xy.
t—00

The theorem says that the (locally) attracting fixed point is asymptotically stable.
To facilitate the proof of Theorem 6, we first state a technical lemma.

Lemma. Take an arbitrary open convex set U containing a domain D, and
contained in domain D, and arbitrary initial data ¢ € Xp. If $(0) is in clif
the closure of U, then zg(t) is in the closure of U for all t > 0. If ¢(0) is not
in the closure of U then there exists a time ty = to(¢, D) such that zg(to) € aul
(the boundary of U) and :cfﬁ(t) € cld for all t > t.

Proof. Suppose first that ¢(0) € clif. Since clif is a convex set, Y C D and
U O f(D), then f(clf) C clid. Therefore, the condition zg(t) € cld Vi > 0 is
implied in this case from the invariance property Theorem 5.

Suppose next that ¢(0) & cld. Note that zg(t) € D for all t > 0 because
of Theorem 5. So if we have the first time £, such that a:fj)(to) € 8D, then
z5(t) € el for all ¢ > to. To show this we just have to repeat the argument of
the proof of Theorem 5.

Thus suppose that ¢(0) ¢ clid and zg(t) & cld for all ¢ > 0. Let V' be the
maximal open convex set containing I/ and such that V N cl{x;(t), t>0}=0.
Note that V may coincide with U. Since V is the maximal set in the above
sense there exists a sequence {t,}, n = 1,2,... such that z5(tn) — o, where
2o € dV. Consider now the bound vectors 5, = %[—x;(tn) + F[mfﬁ(tn — 1)]].
Since V' C D, one has that F(V) C D;. Therefore, all &, are of some length
bounded away from zero and are directed strictly inside the domain V. Since
the origins of the bound vectors s, converge to the point zy € V and 8, is the
vector tangent to the solution zfﬁ(t) att=t,, and |§,| > 6 for some § > 0, there
exists £ such that xfﬁ(t’ ) € V for some t' > tp. In other words, the solution
z5 (%) should enter the domain V/, a contradiction. This completes the proof of
the lemma. O

Proof of Theorem 6. Since = = z¢ is an attracting fixed point of the map F
there exists a sequence of nested convex open neighborhoods Uy, C U, such
that F'(Uy) D Upyr and [V~ Ux = zo (one may choose Uy, = span{F(Uy),
k=1,2,...}). By repeated application of the lemma one sees that there exists a
sequence {t,} — oo such that either T (tn) € OUy, or zg(tn) € intly,. Because
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of the invariance property (Theorem 5) one has T (t) € clidy, for all t > ¢,.
Since nnZI Uyn = xq, the stability follows. O

Further interesting problems remain. For instance, if the matrix A is singular,
the singular perturbation € = 0 yields a singular nonlinear system, with the
associated map implicitly defined by

Azpy = —Flxi]. (36)

The behavior of the nonperturbed solution is not yet completely understood in
this case. We remark however that for the linear case, it follows from Theorem
3 that the system is unstable for sufficiently small e. This is essentially a non-
robustness result of singular systems as “models” for certain differential delay
systems.

4. Conclusions

Regular systems with delayed feedback lead to differential delay models. A
connection between the differential delay system and a singular system was
given. Robust (with respect to the delay) stability and instability conditions were
presented. We have also shown that Riccati-like equations result from the robust
stability criteria. Obviously, if an open loop system is unstable, then the closed
loop with delayed feedback will be unstable for sufficiently large delay time.
Hence robust stabilization of unstable open loop systems is impossible. This is
intuitively clear since for r — oo the closed loop properties are determined by
the open loop behavior.
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